miércoles, 22 de octubre de 2008

REACCIONES NUCELARES DE BAJA ENERGÍA

Low energy nuclear reaction (LENR) research investigates a possible new form of clean nuclear energy and nuclear transmutations. This subject was formerly called cold fusion. LENR does not produce greenhouse gases, strong prompt radiation or long-lived radioactive wastes. The fuel is deuterium or hydrogen, which is abundantly available in ocean water. The dominant reaction product is helium-4, which is harmless.

Low energy nuclear reactions can occur at or near ordinary room temperature. The term "cold fusion" was applied to this field of research initially by the press, not by its discoverers. Many people thought and still believe that it is a form of fusion; however, this claim is speculative.

Initially, the term "cold fusion" distinguished this research from thermonuclear fusion or plasma fusion. Thermonuclear fusion experiments require multimillion-degree temperatures. Since 1951, when thermonuclear fusion research began in the U.S., researchers have not succeeded in generating any useful amounts of energy.

The term "cold fusion " was never ideal to describe low energy nuclear reactions, because it implied that they were just a colder form of thermonuclear fusion, which they are not. The term was adopted by the media in 1989, appearing first in the Wall Street Journal, as a result of confusion with muon-catalyzed fusion. LENR's benign byproducts distinguish them from thermonuclear fusion and a variety of other nuclear experiments that also can run in room-temperature laboratories.

LENR experiments often use for their fuel a form of hydrogen called deuterium, which comes from water. One in every 6,000 water molecules contains deuterium. The energy available in the deuterium in one cubic mile of seawater, if release in a fusion process, exceeds the energy capacity of all the known fossil fuel reserves in the world.

A variety of models has been proposed to explain LENR, some speculate the mechanism as fusion, others do not.

In thermonuclear fusion, a reaction occurs when the nuclei of two deuterium atoms come very close to each other. When this happens, they combine to make helium and a large amount of heat. The hypothesis of a fusion mechanism at room temperature remains speculative; however, the evidence of some as-yet-unexplained source of heat is well-established in the published scientific literature.

Theoretically, fusion of hydrogen can generate 8 million times more energy than the same amount of hydrogen if it were burned in a chemical reaction. Some researchers report LENR experiments using both normal water and machine oil doped with boron. Experiments that generate excess heat using nickel and hydrogen suggest a non-fusion reaction.

RIBOSOMAS HÍBRIDOS


Logran la primera foto de un ribosoma híbrido, directa a los libros de biología
Archivado en:ciencia y tecnologia, ciencia biologia
EFE Actualizado 21-10-2008 13:50 CET
Madrid.- Los libros de texto sobre biología tendrán que hacer hueco en sus páginas a la primera imagen de un ribosoma híbrido, obtenida por un grupo de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) y del CIC bioGUNE.

(EFE)Primera imagen de un ribosoma híbrido, obtenida por un grupo de investigadores del CSIC y del CIC bioGUNE.
Ésta es la respuesta gráfica a un dilema que la comunidad científica ha tardado unos treinta años en resolver, al aportar nuevos datos sobre la síntesis de proteínas o traducción, un proceso biológico fundamental que tiene lugar en los ribosomas, utilizados en biomedicina como diana en gran parte de los antibióticos.

El trabajo, que aparece publicado en el último número de la revista Proceedings de la Academia Nacional de Ciencias de EEUU, ha sido posible gracias a un proceso de computación de más de tres años de duración y a un nuevo método de procesamiento de imagen, único en el mundo.

El estudio cuenta con la participación del investigador del CSIC Sjors Scheres, del Centro Nacional de Biotecnología (CSIC), en Madrid, así como de los científicos de CIC bioGUNE, en Derio (Vizcaya), Patricia Julián, Melisa Lázaro, David Gil y Mikel Valle, autor principal del trabajo.

La síntesis de proteínas, también conocida como traducción, es uno de los tres procesos fundamentales de cualquier tipo de célula y se produce en los ribosomas, las grandes máquinas encargadas de ensamblarlas a partir de la información genética del ADN.

En la traducción, las proteínas se fabrican añadiendo aminoácidos -las unidades que las forman-, que son transportados por los ARN de transferencia.

En su viaje, los ARN de transferencia atraviesan la cavidad interna del ribosoma y, según el modelo aceptado, siempre pasan por tres puntos de unión.

Como explican Scheres y Valle, la pregunta que la comunidad científica se ha hecho en los últimos treinta años es "cómo logran moverse estos ARN de transferencia por el ribosoma".

Los investigadores barajaban la posibilidad de que los ribosomas adoptaban dos estados transitorios para permitir esas tres paradas. "Se entendía que el ribosoma, cuando tiene que mover los ARN de transferencia, se convierte en una máquina dinámica que oscila entre dos estados distintos", ha apuntado Valle.

Con este trabajo de microscopía electrónica, los autores han sido capaces de visualizar las posiciones híbridas del ARN de transferencia A/P y E/P, es decir, en los momentos en que se mueve entre los puntos A y P y entre P y E.